

2-Achs-Kraftsensor XY

Zug-/Druckkraftmessung in X- und Y-Richtung gleichzeitig

TYP **8561**

Detailansicht Stecker

Mit Messverstärker 9250/9251

Highlights

- Messbereiche:
 - 0 ... 4448 N / 0 ... 2224 N (0 ... 1000 lbs / 0 ... 500 lbs) 0 ... 8896 N / 0 ... 4448 N (0 ... 2000 lbs / 0 ... 1000 lbs)
- Weitere Messbereiche auf Anfrage
- Linearitätsabweichung < 0,1 % v.E.
- Sehr geringes Übersprechen < 0,75 % v.E.
- Hohe Maßhaltigkeit, da Sensor aus einem Teil gefertigt
- Hervorragendes Preis/Leistungsverhältnis

Optionen

- Standardisierter Kennwert
- Zweibereichsausführung
- 0-10 V / 4 -20mA
- Diverse Feldbusse z.B. Profinet

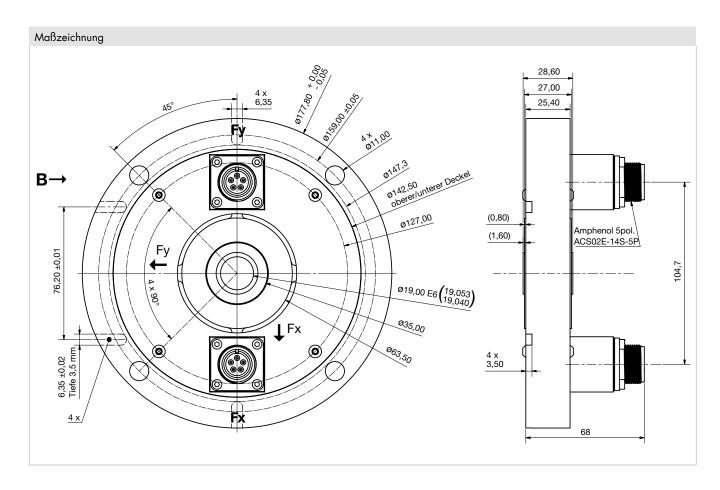
Anwendungsgebiete

- Reifengleichförmigkeits-Prüfmaschinen
- Rotationsprüfungen

Produktbeschreibung

Im Innern des Mehrkomponenten Kraftaufnehmer sind zwei um 90° versetzte Stege mit je einer DMS-Vollbrücke, die die radial wirkenden X-/Y- Kräfte auf die Führungsbuchse in ein elektrisches Signal umsetzen.

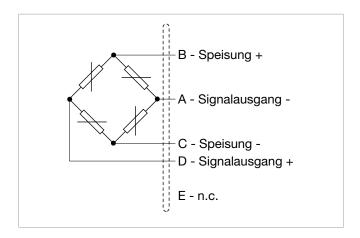
Durch den aus einem Teil gefertigten Sensorkörper mit seiner besonderen Struktur hat der Sensor eine sehr hohe Maßhaltigkeit und ein geringes Übersprechen der beiden einwirkenden Kräfte.


Durch den speziellen Aufbau verfügt der Sensor über hervorragende Linearitätseigenschaften und ist auf eine lange Lebensdauer bei dynamischen Anwendungen ausgelegt.

Die beiden unabhängig voneinander herausgeführten Signalanschlüsse erlauben eine flexible Anpassung und Weiterverarbeitung.

8561	-	1000-0500	2000-1000								
Messbereich kalibriert in N und kN		$X = \pm 4448 \text{ N}; Y = \pm 2224 \text{ N}$	$X = \pm 8896 N; Y = \pm 4448 N$								
von 0		$(X = \pm 1000 \text{ lbs}; Y = \pm 500 \text{ lbs})$	$(X = \pm 2000 \text{ lbs}; Y = \pm 1000 \text{ lbs})$								
Genauigkeit											
Relative Linearitätsabweichung*		≤ ±0,1 % v.E.									
Relative Kennlinienabweichung*		≤ ±0,15 % v.E.									
Übersprechen		< 0,75 % v.E.									
Relative Umkehrspanne		0,1 % v.E.									
Temperatureinfluss auf das Nullsignal		$\leq \pm 0.005 \% \text{ v.E./K}$									
Temperatureinfluss auf den Kennwert		≤ ±0,015 % v.E./K									
Elektrische Werte											
Kennwert nominell		2,0 m	•								
Messrichtung		pos. Ausgangssignal für Druckkraft in Richtung der gekennzeichneten X- bez. Y-Achse									
Standardisierung**		optional 2,0 mV/V (±0,25 %)									
Brückenwiderstand		$350~\Omega$ nominell (Abweichungen sind möglich)									
Speisespannung		5 V DC oder AC (max. 10 V DC oder AC)									
Isolationswiderstand		> 30 MΩ	bei 45 V								
Umgebungsbedingur	ngen										
Nenntemperaturbereich		+15 °C +70 °C									
Gebrauchstemperatur- bereich		0 °C +80 °C									
Mechanische Werte											
Nennmessweg		< 200 µm									
Max. Gebrauchskraft		150 % der Nennkraft									
Bruchkraft		200 % der Nennkraft									
Dynamische Belastbarkeit		empfohle	en: 50 %								
Schutzart (EN 60529)		IP3	30								
Montage											
Vorgesehene Montageschrauben		4 x M10									
Anzugsmomente Montageschrauben		60 Nm									
Montageschrauben		Festigkeit 10.9 oder höher									
Sonstiges											
Werkstoff		Edelstahl 1.4542									
Eigenfrequenz	[Hz]	200	280								
Gewicht	[kg]	3,	3								

^{*} Angaben im Bereich 20 % - 100 % der Nennkraft F


^{**} realisiert auf Platine im Anschlusskabel, 1,7 m vom Sensorgehäuse bzw. 0,3 m vom Kabelende (Temperaturbereich eingeschränkt auf 0 ... 60 °C)

Elektrischer Anschluss

Ausgangssignal

burster Kraftsensoren sind auf Basis einer Wheatstoneschen DMS-Messbrücke konstruiert. Bei diesem Messprinzip ist die Ausgangsspannung (mV/V) stark von der Sensor-Versorgungsspannung abhängig. Geeignete Messverstärker, Anzeigegeräte und Prozess-Instrumente finden Sie auf unserer Webseite.

8561	-	1000-0500	2000-1000							
Messbereich von 0		$X = \pm 4448 \text{ N}; Y = \pm 2224 \text{ N}$	$X = \pm 8896 \text{ N}; Y = \pm 4448 \text{ N}$							
		$X = \pm 1000 \text{ lbs}; Y = \pm 500 \text{ lbs}$	$X = \pm 2000 \text{ lbs}; Y = \pm 1000 \text{ lbs}$							
Elektrischer Anschlus	S									
Stecker		Anschlussstecker Amphenol 5 pol. ACS02E-14S-5P								

Zubehör

Stecker und Kabel

Bestellbezeichnung

Stecker	
9900-V647	Kupplungsdose 90° gewinkelt (zwei mal im Lieferumfang enthalten)
Kabel	
99547-000B-0160030	Anschlusskabel 3 m mit offenem Ende 6-Leiter


Mengenrabatt - Bei geschlossener Abnahme in völlig gleicher Ausführung gewähren wir ab:

Rabattstaffelung	
5 Stück	3 %
8 Stück	5 %
10 Stück	8 %
Größer 10 Stück	auf Anfrage

Applikationsbeispiel

Typische Anwendung: Gleichförmigkeitsmessung von Rädern

Eine gängige Anwendung ist beispielsweise die Erfassung der radialen und lateralen Kräfte bei abrollenden Rädern. Der für dynamische Anwendungen geeignete Sensor lässt sich einfach in automatisierte Prüfanlagen integrieren und es kann somit die Gleichförmigkeit von beispielsweise PKW-Reifen überprüft und bewertet werden.

Mit dem Einsatz der neuen Messverstärker-Generation 9250/9251 lässt sich der Sensor problemlos an jedes Profinet-fähige System ankoppeln. Weitere Informationen finden Sie auf unseren Datenblätter unter **www.burster.de**.

Zweibereichsausführung

Zweibereichsausführ	ung
Optional erhältlich	Optional erhältlich ist ein zusätzlicher Kalibrierschein für einen zweiten, um eine Stufe kleineren Messbereich. Zum Beispiel für den Messbereich 4448 N 2224 N auch einen Kalibrierschein für 2224 N 1112 N. Damit ergibt sich eine Spreizung je nach Messbereich von 1:2.
Messbereich	Spreizung Spreizung
4448 N 2224 N 1000 lbs 0500 lbs	2224 N 1112 N 500 lbs 0250 lbs
8896 N 4448 N 2000 lbs 1000 lbs	4448 N 2224 N 1000 lbs 0500 lbs

Technische Daten – sich ändernde Größen für den gespreizten Messbereich					
Temperatureinfluss auf das Nullsignal	≤ ±0,015 % v.E./K				
Kennwert nominell	1,0 mV/V				

Bestellcode

Messbereich	Code							Messbereich				
X: 0 ±4448 N Y: 0 ±2224 N	1	0	0	0	0	5	0	0	X: 0 ±1000 lbs Y: 0 ±500 lbs			
X: 0 ±8896 N Y: 0 ±4448 N	2	0	0	0	1	0	0	0	X: 0 ±2000 lbs Y: 0 ±1000 lbs			
8 5 6 1 -									-			0
■ Nomineller Kennwert/nicht standardisiert								N				
■ Standardisierung auf 2,0 mV/V												
■ Standard 0									0			
■ Kalibrierung 1:2 / Zweibereichsausführung												

Hinweise

■ Broschüre

Unsere Broschüre "Kraftsensoren – für Produktion, Automation, Entwicklung und Qualitätssicherung" steht Ihnen zum Download auf unserer Webseite zur Verfügung oder kann angefordert werden. Sie beinhaltet viele Applikationen, detaillierte Produktbeschreibungen und Übersichten.

Produkt-Videos

Unsere Einbau-Videos finden Sie unter: www.youtube.com/bursterVideo

CAD-Daten

Download über www.burster.de oder direkt bei www.traceparts.de

